A membrane-less electrolyzer with porous walls for high throughput and pure hydrogen production
نویسندگان
چکیده
منابع مشابه
Advances on High Temperature Pd-Based Membranes and Membrane Reactors for Hydrogen Purifcation and Production
Membrane technology applied in the chemical and energy industry has the potential to overcome many drawbacks of conventional technologies such as the need of large volume plants and large CO2 emissions. Recently, it has been reported that this technology might become more competitive...
متن کاملHigh Throughput Membrane-less Water Purification
This whitepaper describes a highly scalable fluidic technology that presents a transformative approach to the practice of conventional water treatment. Features include: a high throughput, purely fluidic, continuous flow, membrane-less, size selective method for particulate extraction; and accelerated agglomeration kinetics from mixing and transporting chemicals and raw water in confined channe...
متن کاملOne-Dimensional Electrolyzer Modeling and System Sizing for Solar Hydrogen Production: an Economic Approach
In this paper, a solar based hydrogen production in the city of Tehran, the capital of Iran is simulated and the cost of produced hydrogen is evaluated. Local solar power profile is obtained using TRNSYS software for a typical parking station in Tehran. The generated electricity is used to supply power to a Proton Exchange Membrane (PEM) electrolyzer for hydrogen production. Dynamic nature of s...
متن کاملMathematical model of a parallel plate ammonia electrolyzer for combined wastewater remediation and hydrogen production.
A mathematical model was developed for the simulation of a parallel plate ammonia electrolyzer to convert ammonia in wastewater to nitrogen and hydrogen under basic conditions. The model consists of fundamental transport equations, the ammonia oxidation kinetics at the anode, and the hydrogen evolution kinetics at the cathode of the electrochemical reactor. The model shows both qualitative and ...
متن کاملPorous silicene as a hydrogen purification membrane.
We investigated theoretically the hydrogen permeability and selectivity of a porous silicene membrane via first-principles calculations. The subnanometer pores of the silicene membrane are designed as divacancy defects with octagonal and pentagonal rings (585-divacancy). The porous silicene exhibits high selectivity comparable with graphene-based membranes for hydrogen over various gas molecule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainable Energy & Fuels
سال: 2021
ISSN: 2398-4902
DOI: 10.1039/d1se00255d